Sri Sathya Sai College for Women, Bhopal (An Autonomous College Affiliated to Barkatullah University Bhopal)

Department of Higher Education, Govt. of M.P.
Under Graduate Syllabus (Annual Pattern)
As recommended by Central Board of Studies and approved by the Governor of M. P. wef 2021-2022
(Session 2023-24)
(NEP-2020)

Class	BCA
Year	I Year
Subject	Computer Applications
Course Title	Discrete Mathematics
Course Type	Elective
Credit Value	6
Max. Mark	30+70 (Minimum Marks 35)

Course Outcome: This course will enable the students to:

- Apply the Boolean algebra, switching circuits and their applications.
- Minimize the Boolean Function using Karnaugh Map.
- Understand the lattices and their types.
- Graphs, their types and its applications in study of shortest path algorithms.
- Test whether two given graphs are isomorphic.
- Understand the Eulerian and Hamiltonian graphs.
- Represent graphs using adjacency and incidence matrices.
- Understand the discrete numeric functions, generating functions and Recurrence Relations.

Particular

Unit I	Relations: Binary, Inverse, Composite and Equivalence relation, Equivalence classes and its properties, Partition of a set, Partial order relation, Partially ordered and Totally ordered sets, Hasse diagram. Lattices: Definition and examples, Dual, bounded, distributive and complemented lattices.
Unit II	Boolean Algebra: Definition and properties, Switching circuits and its applications. Logic gates and circuits. Boolean functions: Disjunctive and conjunctive normal forms, Bool's expansion theorem, Minimize the Boolean function using Karnaugh Map.
Unit III	Graphs: Definition and types of graphs, Subgraphs, Walk, path and circuit, Connected and disconnected graphs, Euler graph, Hamiltonian path and circuit, Dijkstra's Algorithm for shortest paths in weighted graph.
Unit IV	Trees: Definition and its properties, Rooted, Binary and Spanning tree Rank and nullity of a graph, Kruskal's and Prim's Algorithm, Cut-set and its properties, Fundamental Circuit and Cut-Set, Planar graphs. Matrix representation of graphs: Incidence, Adjacency, Circuit, Cut Set, Path.
Unit V	Discrete numeric and generating functions: Operations on numeric functions, Asymptotic behavior of numeric functions, Generating functions.

1

	Recurrence relations and recursive algorithms: Recurrence relations, Linear recurrence relations with constant coefficients, Homogeneous solutions, Particular solutions, Total solutions, Solution by the method of generating functions.
Keywords/Tags:	Relation, Hasse diagram, Lattices, Boolean Algebra, Boolean function, Graph and Subgraph, Path and circuit, Tree, Spanning tree, Cut-set, Matrix representation of graph,
Discrete numeric function, Generating function, Recurrence relation, Recursive algorithm.	

Suggestion Books:

- J. P. Tremblay and R. Manohar, Discrete Mathematical Structures With Applications To Computer Science, McGraw Hill Education, 1st edition, 2017.
- C. L. Liu: Elements of Discrete Mathematics, McGraw Hill Education, 4th edition, $20 t 7$.
- Narsingh Deo: Graph Theory with Applications to Engineering and Computer Science, Prentice Hall India Learning Private Limited, 1979.

Reference Books:

- Seymour Lipschutz and Mark Lipson: Discrete Mathematics (Schaum Outline), McGraw Hill Education, 3rd edition, 2017.
- Edgar G. Goodaire and Michael M. Parmenter, Discrete Mathematics with Graph Theory, Pearson Education Pt. Ltd., Indian Reprint 2003.

Suggestive digital platform web links

https://www.highereducation.mp.gov.in/?page=xhzIQmpZwkylQo2b\%2Fy5G7w\%3D\%3D

Suggested equivalent online courses

- https://nptel.ac.in/courses/111106086/
- https ://ugemoocs.inflibnet.ac.in/index.php/courses/view_ug/311

Scheme of Marks:

Maximum Marks: 100			
Continuous Comprehensive Evaluation (CCE): 30 marks, Term End Exam Theory: 70 marks			
Internal Assessment: Continuous Comprehensive Evaluation (CCE):	Class Test Assignment/ Presentation	$\mathbf{3 0}$	
External Assessment: University Exam Section Time:03.00 HoursSection (A) Very Short questions Section (B) Short questions Section (C) Long questions	$\mathbf{7 0}$		
		Total $\mathbf{1 0 0}$	

